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i. INTRODUCTION

Thi s report presents an algorithm for computing the stationary
point of a quadratic function of n variables subject to a set of m(m~~ n)

linear equality constraints. The procedure is compact in the sense that it
requires no two-dimensional arrays of computer storage beyond that needed
to store the problem data. The use of a Householder orthogonal decom-
position by this method should not degrade the numerical conditioning of the
original problem. This method is applicable to problems with singular
Hessian matrices, and can be adapted for use in a general quadratic
programming algorithm.

In the subsequent section8 of this report, the identifying numbers
of equations in the text are enclosed with parentheses, and the identifying
numbers of references are enclosed with brackets.

I
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2. PRELIMINARIES

Define the quadratic function

i T  Tf(x) T x  Ax + b x ( 1)

and the linear constraints

C x = d  (2)

where A is an ii x n symmetric matrix, b is an n-vector, C is an m x n
matrix of rank m, d is an rn-vector, and x is an n-vector for m � ii. Define

*the solution x to be the vector which: (a) satisfies the constraints, (b)
minimizes the norm of the gradient of f restricted to the constraint surface
and, (c) minimizes the length of the orthogonal projection of x on the
constraint surface.

When A is positive (negative ) definite , the solution defines the unique
stationary point which corresponds to the minimum (maximum) of f restricted
to the constraint surface. While the stated problem may be of interest by
itself , typically it may appear as a subproblem in a more general application.
For example, many quadratic programming algorithms solve a series of
problems of this type with different constraint sets. Furthermore, an
algorithm designed to optimize a non-quadratic function subject to nonlinear
constraints may pose a series of quadratic-linear problems to approximate
the behavior of the actual functions. Consequently, it is desirable to develop
a computational algorithm which will compute a solution to the problem with-
out re stricting the rank of A. The computed solution should be the unique
solution when it exists, and should be uniquely defined by the algorithm when
a unique solution does not exist.

When the minimum norm of the projected gradient is zero, the solution
to the stated proble m is a stationary point of the Lagrangian function 
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L(x, ~
,) = ~~~~ Ax + bT x + ~T (Cx - d) (3)

where ). is the rn-vector of Lagrange multipliers. Setting the derivative of
this function with respect to x and )~ equal to zero yields the set of linear
equations

A cT x~ -b
= . (4)

C 0 d

The optimal solution x~ and the corresponding multiplier values
can be obtained by solving the system (4). It is not necessary to assume that
A is of full rank. When the problem has a unique solution, the system may
be solved using a suitable algorithm for linear equations. If the possibility
of a non-unique solution exists, the system may be solved as a linear least
squares problem. This approach has been used 1’ 2 utilizing the linear
least squares algorithm of Hanson and Lawson3. A defect in this approach
is the need to store the (n + m) x (n + m) coefficient array.

An approach which can be implemented using only the storage required
for A and C can be derived by inverting the coefficient matrix in a partitioned

1J. T. Betts , IIA Gradient Projection - Multiplier Method for Nonlinear
Programming, ” Journal of Optimization Theory and App~icatione,
Vol 24, No. 4 (April 1978).

2J. T. Betts, “An Accelerated Multiplier Method for Nonlinear
Programming, I I  Journal of Optimization Theory and A~pp~1ications,
Vol 21, No. 2 (February 1977).

3R. J. Hanson and C. L, Lawson, “Solving Least Squares Problems, ”
Prentice-Hall, Englewood Cliffe , N.J. (1974).

6
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I
form. It is easily demonstrated that

A cT ’ B1 B2
= T (5)

C 0 B2 B3

where

B1 = A ’ - A ’ CT M ’ CA ’ (6)

B2 = A ’ cT M ’ (7)

B3 = M ’ (8)

and

M = CA ’ cT (9)

The partitioned form of the inverse plays an important role in a number of
quadratic programming algorithms, including those of Goldfarb 4 and
Fletcher , as well as in the constrained minimization algorithm of
Murtagh and Sargent 6. Two significant points deserve comment regarding
this approach. First, if it is assumed that A 1 exists, the submatrices in (5)
can be computed directly. Goldfarb , Murtagh, and Sargent assume that A is

4n. Goldfarb, “Extension of Newton’s Method and Simplex Methods for
Solving Quadratic Programs, ” In Numerical Methods for Nonlinear
Optimization, F. A. Looternan (Ed , )  Academic Press, London, ch, 17
(1972).

5R. Fletcher , “A General Quadratic Programming Algorithm, ”
J. Inst. Math. Appi., Vol 8 ( 1971).

A. Murtagh and R. W. H. Sargent, “A Constrained Minimization
Method for Quadratic Convergence, ” In Optimisation, R. Fletcher
(Ed.), Academic Press , London, ch. 14 (1969)

I
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positive definite, which ensure s that A is of full rank. If the algorithm is part
of a more general nonlinear programming algorithm as in [1] and [2], it is

restrictive to assume that A is of full rank. For example, the approach could
not be used as part of an algorithm to optimize a linear function subject to
nonlinear constraints. In these general applications, it is really only
necessary that the Hessian matrix restricted to the constraint surface be
definite. Fletcher does not assume A is definite, noting that the partitions
B 1, B2, and B 3 must exist if the solution to the problem is unique. However,
to compute the initial submatrices in the computer implementation of his
quadratic programming algorithm7, it is necessary to invert the full

(n + m) x (n + in) matrix.

Even if A is assumed to be definite, the partitioned approach to the
problem suffers from a second defect. This occurs when A = I, M = ccT,
which is referred to as the normal matrix. In this case, the condition

number of M is the square of the condition number of C and it is generally
recognized that the formation of M is to be avoided.

In summary, direct solution of the system (4) is not compact from a
storage standpoint. The various forms of solving the partitioned system (5),
although compact, require operations which can degrade the numerical
conditioning of the given problem and are arbitrarily re strictive with regard
to Hessian matrix A. A new algorithm will be proposed which is compact,
does not degrade the numerical conditioning, and makes no restrictions
concerning the rank of A.

7R. Fletcher, “A FORTRAN Subroutine for Quadratic Programming, ”
Report No. AERE R6370, UKAEA Re search Group, Harwell, England.
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I
3. ORTHOGONAL DECOMPOSITION ALGORITHM

In thi s section, an algorithm is developed for solving the stated
constrained stationary point problem using an orthogonal decomposition of
the constraint matrix. The algorithm is an extension of the linearly con-
strained linear least squares algorithm LSE given in [3], and makes use
of Theorem (3. 19) and Theorem (2. 3) stated therein.

Define the orthogonal decomposition of C by

C = R KT (10)

where K is an n x n orthogonal matrix and R

R = [R 11 0] ( 11)

where R 11 is an m x  in nonsingular triangular matrix. Substituting (10)

into (2)

R.KT x = d, (12)

Define the n-vector y by

Ty K x (13)

and the partitions of K and y

K = [K1 K2] (14)

m n-rn

= [y
,~~ m 

(15)

y2 ~n-m

p 
. ,

—9-
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From (11), (13), and (15), one can write (12) as

R KTX = Ry = [R 11 01 f~
] = R11y1 = d ( 16)

Since R 11 is non-singular, (16) determines the rn-vector y1. Call the solution
y1. The (n-rn) -vector y2 is arbitrary.

Pre-multiply (13) by K to give

Ky ~~~~~~~~~~ (17)

where KKT 
= I, since K is orthogonal. From (14) and (15), (17) become s

x = Ky = [K1K2 ] = K1y 1 + K2y2 (18)

Observe that all points satisfying the constraints in Eq. (2) can be represented as
functions of the n-rn parameters y2 when the solution of (16) 

~~ 
is substituted

in Eq. (18). In fact if there were no other conditions to satisfy, a reasonable
choice for the arbitrary parameters y2 would be zero, in which case x is the
minimum norm solution to the constraints.

Instead of setting y2 = 0, the choice of y2 shall be determined by a
different criterion. Substitute the parametric representation of x from (18)
with into (1) to obtain

f = ~ (K 1~~1 + K2y2 ) T A (K 1~ + K2y2 )

(19)

+ bT (K 1~i
1 + K2y2 )

The gradient with respect to the variables y2 is

vf = ~~~
T A ( K cI~ + K2y2) + K2

T b . (20)

— 10-
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Let us define to be the value of y2 which minimizes

~1vf II = 1IK 2
T AK 2y2 + (K2

T b + K2
T A K 19-1)II (21)

and is of minimum norm, i.e., minimizes II y2 ~
. If a stationary point of f

restricted to the constraint surface exists, then II Vf ~ = 0 and ~ define s the
optimal value. If the matrix K2 A K2 is indefinite, the minimum norm
criterion uniquely determines 

~~~ 
In fact, when the rank of K2

T AK2 is ze ro
as is the case for a linear objective function , the solution which minimizes
the norm of II y2 I~ is just 

~~~ 
= 0. Notice also that the formation of the

matrix K2
T AK 2 should not degrade the conditioning of the original problem.

Observe also that a solution which minimizes ~ 
y211 minimizes j~ K2y2 II since

fi “
~2 ~ 

= ~1 K2y2 fi, and K2y
2 

is just the orthogonal component of x in the
constraint surface.

In summary, the original constrained optimization problem is replaced
by a lower dimensional unconstrained least squares problem in the variables
y2, after choosing the variables y 1 to satisf y the constraints. The method
has the property that the unique minimum length solution of the derived
unconstrained problem define s the unique solution of the constrained problem
when it exists. When the constrained problem has no unique solution, the
algorithm computes a unique point which satisfies the constraint s, minimizes
the norm of the gradient on the constraint surface, and minimizes the length
of the orthogonal component in the constraint surface.

-11-
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4. COMPUTATIONAL ALGORITHM

In this section a computational procedure based on the approac~i derived
in Section 3 is developed. The procedure is organized so that no additional
two-dimensional arrays are needed , Specifically, the original problem data
stored in A, C and b is destroyed by the algorithm. Quantities written with
a tilde can replace quantities without a tilde in storage , and quantities written
with a circurn.flex can overwrite quantities written with a tilde.

Step 1. Compute the orthogonal matrix K and postmultiply C by it to
triangu]arize C, i. e.,

CK = [e’, O ] J n - 1  (22)
in n-rn

Step 2. Compute

= KT
A (23)

A

Step 3. Form the last n-rn rows of the matrix A where

A = X K  (24)

Observe that from (23) and (24)

K 1
T AK 1 K1

T AK
2 1 

) m

A = K T A K =

K2
T AK , K2

T A K2] J n-rn

(25)

= 

[

~~il  
A

12]
A~~ A22

-i - 

- 
— 

- 

~13- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Step 4. Compute

~~~~= KTb (26)

Step 5. Solve the lower triangular system

= d (27)

for the rn-vector y1.

Step 6. Compute

= 
~~2 - A21;1 (28)

where

~,1Im ~ l I m
b = I ~~~~ = (29)

b2i t n _ m  b2 n-rn

Step 7, Determine as the minimum length solution of the linear
least square problem

mm ~ A 22 ~2 - II • (30)

Observe that this process is equivalent to solving (21)

Step 8. Construct the solution vector

x = K~~- (31)

using 
~~ 

as computed in Step 5, and from Step 7.

-14-
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I
The algorithm described has been implemented in the subroutine

• HSQP. The FORTRAN listing of this subroutine is found in [8]. The sub-
routine makes extensive use of the subroutine s HFTI and H 12 which
implement the algorithms referred to as HFTI, Hl , and H2 in [3]. The
subroutine HFTI computes the minimum length solution to a linear least
squares problem. HFTI requires storage for the problem data and three
one-dimensional work arrays. The subroutine H12 implements algorithm
HI and H2 for the construction and application of a Householder transform-
ation. Using H 12 it is not necessary to explicitly form the orthogonal matrix
K of Eq. (10). Instead, the elements necessary to construct the matrix can
be stored in the upper triangular portion of the original matrix C and some
one-dimensional work arrays. Successive applications of the matrix K to
other vectors implicitly reconstruct the original transformations.

The total storage required for subroutine HSQP, including that re-
quired to specify the problem data, is N1 = n(m + n) + 5n - m + 4. In contrast,
any algorithm which solve s (4) directly will require at least N2 = (n + m)
(n + m + 1) storage locations. Consequently, for some problems N2 can be
nearly twice as large as N 1. The algorithm is used repeatedly as part of
the general nonlinear programming algorithm described in [1]. In particular,
all of the extrapolation steps used in the constraint phase of this algorithm
employ HSQP. Computational experience with the algorithm includes its
use to solve the set of 17 equality constrained and 34 inequality constrained
problems in [I], as well as a number of larger engineering applications.
One typical application is described in [91. The largest engineering applica-
tion of the algorithm to date occurred in an optimum solid rocket motor
design problem which involved 48 variables and 83 constraints.

T. Betts , “Algorithm (To Appear): The Stationary Point of a Quadratic
Function Subject to Linear Constraints, ” ACM Trans. Math. Software.

9J. T. Betts , “Optimal Three Burn Orbit Transfe r ” AIA.A Journal,
Vol 15, No. 6 (June 1977). - 
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5. SUMMARY

An algorithm for computing the stationary point of a quadratic function
of n variables subject to m linear equality constraints is developed. The
algorithm has been implemented in FORTRAN. The implementation is
compact since it requires no two-dimensional arrays beyond that needed to
define the problem. The algorithm avoids mathematical operations which
would degrade the conditioning of the original problem by utilizing an
orthogonal decomposition of the constraint matrix. The solution generated
by the algorithm is characterized by three properties: (a) the constraints
are sati sfied , (b) the norm of the gradient of the objective function restricted
to the constraint surface is minimized and, (c) among all solutions satisfying
the first  two properties, the minimum length solution is chosen. When the
stated problem has a unique solution, satisfaction of the first two properties
define s the point. Nevertheless, the algorithm is not restricted to problems

) with definite Hessian matrices. The algorithm has been successfully tested
as part of a general nonlinear programming algorithm.

I
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APPENDIX

THE STATIONAR Y POINT OF A QUADRATIC FUNCTION
• SUBJECT TO LINEAR CONSTRAINTS

This algorithm implements the method developed in the preceding
sections of this report.

SUBROUTI NE H S Q P ( A ,B ,C ,D ,M , N ,T&U ,G, H ,U,IP ,I IA! RA,N AX R C , D J N O R N ,x ,
$ KRAtIK)

C
C
C

DIMENSION B(1) ,D (1) ,G( 1) , H ( 1), U ( 1) , IP ( 1 ) , DJ N O R M ( 1 ) , X ( 1 )
DIMENSIO N A ( N A X R A , 1) , C ( M A ~~RC ,1)

C P R O G R A M M E R  AND DATE:  J .T.BE TTS , JAN.  1978.
C
C PURPOSE: GIVEN AN H X N MATFIX C (OF R A N K  N ) ,  AN N VECTOR 0,
C A N  N I N S Y M M E T R I C  M A T R I X  A , A N D  AN N VECTOR B , FIND THE
C STAT I O N A R Y  POINT X OF THE Q U A D R A T I C
C
c = .5 *( X **T ) *A *X  + (B **T) *X
C
C SUBJ ECT TO THE CONSTRAINTS
C
c ~*X = 0.
C
C IF A STATIO N ARY POI NT DOES NOT EXI ST THE AL GORITH M W ILL FI N D
C A PO IN T WHI CH SA TI SFIES THE C O N S T R A I N T S  A N D  MIN I t i I ZI S  T H E
C NORM OF THE GRADIENT OF J PROJECTED ON THE CONSTRAINT SURFACE.
C
C ALGORITHM: ORTHOGONAL DECOMPOSITION OF C MATRIX USING
C HOUSEH OLDER TRAN SFO RMATI ONS, FOLLO W ED BY APPLICATION OF THE

- -  • _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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C OPTIM A L IT Y CONDITI ONS I N THE P~ PUCED VARIABLES.C
C INPUT:
C
C A N I N SYMME T R I C HE SSIAN M A T R I X
C B N DIMENSIONAL GRADIENT VECTOR
C C N X N JACOBI AN N A T F I X  (BA NK N)
C 0 N DIMENSIONAL CONSTRAINT VECTO R
C N THE NUMBER 0? CONSTPAINTS
C N THE NUMBER 0? VARIABLES
C TAU PSEUDORANK TEST PAFANETE It. FOR A MACHINE WITH K
C SIGN I F I C A N T  FIGURES AN APP R OPRIATE VALUE IS
C TAU = 1.E—(K+2).
C G AtIXILLIARY STORAGE (LENGTH N)
C H AUX ILLIARY STORAGE (LENGTH N—N)
C U AUXILLIARY STORAGE (LENGTH N—N)
C IP AUXILLIARY STORAGE (LENGTH N—N)
C M A X E A  M A X I M U M ROW DIMENSION 0? A ( N A X P A  N)
C MA XR MAXIM u M POW D I M E N S I O N  OF C ( N A X R C  P1)
C
C OUTPUT:
C
C DJN O R N PROJE CTED GR A D I E N T  NORM (ZEP O IF I IS A STATIONAR Y
C POINT , NE GATIVE IF THERE IS AN INPUT E R R O R )
C I COMPUTED STATIONARY POINT
C KBANK PSEUDOBANK OF PROJECTED HESSIAN MATRIX (K2**T)*A*K2.
C WHEN KRAN K .LT. N—N THE PROJ ECTION OF I ON THE
C CONSTRAINT SURFACE HAS MINIMUM NORM.
C
C NOTE: TB~ I N PUT V A L U E S OF A ,B,C, AND D ARE DESTROYED.
C
C 
C
C iN I T I A L I Z A T I O N
C

K R A N K  = 0
MP1 M + 1
P 1 M M  = N — H
DJMOR M (1) = —1 .

C
C CHEC K FOR INPUT ERRORS
C

IF (N.EQ.O.OR.N.C~T.NAXRA .OR.M ,GT,NAXPC .0R.P1.GT.I1) RETURN
C

~2O-
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BEST QUALITY

) ~~~~ j u~IUS1~F~ID TO DD9 
-

C IF THE PROBLEM IS UNCONSTRAINED GO TO STEP 7
C

IF (H.E Q.0) GO TO 100
C
C 
C
C STEP. 1. COMPUTE ORTHOGONAL MATRIX K. TRIANGULARIES C.
C

DO 1~ I = 1,M
CALL H 12 (1,I,I+1 ,N,C ( I ,1),P!AXRC,G(I),C ( I +1,1),PIAXRC,1,M—I)

13 CONTINUE
IF QI.EQ.N) GO TO 50

C
C 
C
C STEP 2. COMPUTE ATILDA = (K~ *T)*A
C

DO 20 I = 1,M
CALL H 12 (2 ,I ,I+1 , N ,C (I , 1) , N A X R C ,G( I ) , .& , 1,N A X R A ,N)

20 CO NTINU E

‘ 
C
C 
C
C STEP 3. FORM THE LAST N-N ROWS OF AHAT = A T ILDA *K ;  I .E.
C COMPUTE A 2IHAT (K2*~T)*A*K1 AN D A22RAT = (K2**T)~~A*K2
C

DO 3) I = 1,M
CALL H 1 2( 2 ,I ,I + 1 ,N ,C(I , 1), M A X R C ,G( I ) , A (MPI ,1) , N AX RA , 1, NN M )

3~ CO N T I N U E
C
C 
C
C STEP 4. COMPUTE STILDA = (K**T) *B
C

DO 43 I = 1,M
CA LL H12 (2,I ,!+1,N,C(I,1),M A X R C ,G(I) ,B,1,1,1)

• 43 CONTINtJ 7~
C
C 
C
C STEP 5. COMPUTE Y1HAT BY SOlVING THY LOWER TRIANGULAR
C SY STEM C~ Y 1 0. STORE IN X.
C

50 CONTINU E

_ _ _ _-- 
~~~~~~~~~~~~~~~~~ 
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X( 1)  = D(1)/C (1,1)
IF (M.EQ. 1) GO TO 90
DO 70 I = 2 ,M
IN1 = I — 1
1 (I) = D(I)
DO 63 J = 1, IN1
1(I) = X CI) — C(I,J)*X (J)

63 CONTINUE
1(1) = X (I ) /C( I ,I)

73 CON TINUE
83 CONTINUE

C
C WHEN THERE ARE NO DEGRP.ES OF FREEDO M GO TO STEP 8
C

IF(M.EQ.N) GO TO 140
C
C 
C
C STEP 6. COMPUTE B2HAT = —B2TILDA — A21HAT*Y1HAT
C

DO 93 I M P 1 ,N
8(I) = —5(I)
DO 93 J = 1,P1
k3(I) = 8(I) - A (I,J)*X (J)

90 CONTINUE
C
C
C
C STEP 7. SOLVE A22HAT*Y2 = B2HAT FOR Y2 USING UFTI
C

100 CON T I N U E
C
C COMPUT E PSEUDORANK TEST PARANETER EPS
C

E P S  = T&U
DO 12) 3 = MP1 ,N
COLNRN = C .
DO 11-C I = ~lP 1 , PI
COLN R M = C O L N R M  • A ( I ,J)**2

113 C O N T I N U E
EPS AN A X 1 ( F P S , T A U *S Q R T ( C O L N RN ) )

120 CONTINU E
C

CALL H F T I ( & ( P I P 1 ,M P 1 ) , N A X R A ,MNN ,NNtI ,B ( N P I ) , 1,1,EPS ,K R A N K ,D JN OR PI ,

-22~

-
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?1~GM ~~PY FUB2~ISHED TO.DDC

S lI,U,IP)
C

DO 130 I NP1 ,N
X (I) = 5 (I)

130 CONTINU~
C
C IF THE PROBLE M IS UNCONSTRAINED , RETUR N.
C

IP(M .EQ. ) RETURN
C
C 
C
C STEP 8. COMPUTE X = K*Y
C

140 CONTI NU E
DO 1’~O K = 1,M
I = M P 1 — K
CALL H 12 (2.I,I+1 ,N ,C(I,1),N A X R C,G(I),X,1,1,1)

150 CO N T I N U E
C

E TU R N
END
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